

19/

HALF-WAVE MERCURY-VAPOR RECTIFIER

1	GENERAL	DATA			
Electrical:					
Filament, Coated:		Min.			
Voltage		2.25		2.75	ac volts
Current at 2.5 volts . Heating time at rated		_	2	2.2	amp
voltage		10			sec
Peak Tube Voltage Drop					1.
(Approx.)		-	15		volts
Mechanical:					
Operating Position					, base down
Maximum Överall Length					4-11/16"
Seated Length Maximum Diameter		• •		. 3-10	5/16" ± 1/8"
					1–9/16" 1 oz
Bu 16					ST12
Cap			Sm	all (JE	TEC No.C1-1)
Socket	John	son No	122	-224, o	r equivalent
Base	mall-Shel	I Sma	11 4	Pin (JŁ	TEC No.A4-5)
basing besignation to	MOTION -	VIEW .			4
Pin 1 - Filament	2	(3)		Pin 4-	Filament,
Pin 2 - No Connec-	/ -	.)			Cathode
tion	(.	• /			Shield
Pin 3 - No Connec- tion	Δ	1		Cap-	- Anode
L TON	0	- (
Temperature Control:					
Heating-When the am	bient ter	nperat	ture	is so 1	ow that the
normal rise of con					
ambient temperature					
temperature up to ranges specified					
heat-conserving er					
required.		•		•	
Cooling-When the op	erating o	condit	ions	are su	ch that the
maximum value of t					
perature range is	exceeded	d, pr	ovisi	on sho	uld be made
for forced-air coo	ling suf	ticier	nt to	preven	t exceeding
Temperature Rise of Con-	danaad Na		+ o F	:1:be	
Above Ambient Tempera				quitibe	ıum
No load	, , ,	• • •			22 °C
Full load					26 °C
				→ Indic	ates a change.
8–57					DATA 1

HALF-WAVE MERCURY-VAPOR RECTIFIER

HALF-WAVE RECTIFIER

Maximum Ratings, Absolute Values: For supply frequency of 60 cps

Operating Condensed-Mercury-Temperature Range 20° to 60° C

PEAK INVERSE ANODE VOLTAGE 7500	max. voltsi
ANODE CURRENT:	
	max. ma max. ma
Average# 125	max. ma
Fault, for duration of 0.1	max. amp
second maximum 5	max. amp
	i

 $^{^{\#}}$ Averaged over any interval of 30 seconds maximum.

OPERATING CONSIDERATIONS

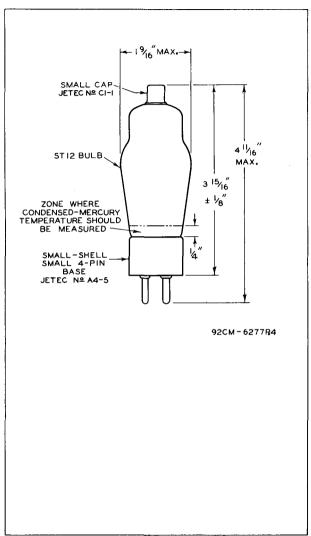
Shields and rf filter circuits should be provided for the 816 if it is subjected to extraneous high-frequency fields during operation. These fields tend to produce breakdown effects in mercury vapor and are detrimental to tube life and performance. When shields are used, special attention must be given to providing adequate ventilation and to maintaining normal condensed-mercury temperature. Rf filters are employed to prevent damage caused by rf currents which might otherwise be fed back into the rectifier tubes.

- Indicatés a change.

9/6

%

HALF-WAVE MERCURY-VAPOR RECTIFIER


For Circuit Figures, see Front of this Section

For Circuit Figures, see Front of this Section						
CIRCUIT	MAX. TRAMS. SEC. VOLTS (RMS) E	APPROX. DC OUTPUT VOLTS TO FILTER Eav	MAX. DC OUTPUT AMPERES	MAX. DC OUTPUT KW TO FILTER Pdc		
Fig. I Half-Wave Single-Phase In-Phase Operation	5300 ⁰	2400	0.125	0.3		
Fig. 2 Full-Wave Single-Phase In-Phase Operation	2600 ^p	2400	0.25	0.6		
Fig. 3 Series Single-Phase In-Phase Operation	5300□	4800	0,25	1.2		
Fig. 4 Half-Wave Three-Phase In-Phase Operation	3000 ⁰	3600	0.75	2.7		
Fig. 5 Parallel Three-Phase Quadrature Operation	3000 ^p	3600	1.5	5.4		
Fig. 6 Series Three-Phase Quadrature Operation	3000 ^p	7200	0.75	5.4		
Fig. 7 Half-Wave Four-Phase Quadrature Operation	2600 ⁰	3500	Resis- Induc- tive tive Load Load 0.45 0.5	Resis- Induc- tive tive Load Load 1.55 1.75		
Fig. 8 Half-Wave Six-Phase Quadrature Operation	2600□	3600	Resis- Induc- tive tive Load Load 0.47 0.5	Resis- Induc- tive tive Load Load 1.7 1.8		

 $^{^{\}rm D}$ for maximum peak inverse anode voltage of 7500 volts and condensed-mercury-temperature range of 20 $^{\rm O}$ to 60 $^{\rm C}$ C.

HALF-WAVE MERCURY-VAPOR RECTIFIER

8/6